Future long baseline neutrino experiments

Patrick Huber

University of Wisconsin – Madison

based on

V. Barger, PH, D. Marfatia and W. Winter, hep-ph/0610301 & hep-ph/0703029

Fermi National Accelerator Laboratory June 17, 2007

Outline

- Status quo
- Neutrino oscillation
- Experimental strategies
 - T2KK
 - NO*v*A*
 - WBB
- Comparison & robustness
- Summary

- Conversion of ν_e from the Sun into $\nu_{\mu} + \nu_{\tau}$
- Disappearance of $\bar{\nu}_e$ from nuclear reactors at a distance of $\sim 200\,\mathrm{km}$
- Disappearance of ν_{μ} from the Atmosphere
- Disappearance of ν_{μ} from a neutrino beam
- No disappearance of $\bar{\nu}_e$ from nuclear reactors at a distance of $\sim 1 \, \mathrm{km}$
- No disappearance of ν_{μ} from high energy beams at a distance of $\sim 0.5\,\mathrm{km}$
- No appearance of ν_e at MiniBooNE

A common framework for all the neutrino data is oscillation.

- $\Delta m_{21}^2 \sim 8 \cdot 10^{-5} \, \mathrm{eV}^2$ and $\theta_{12} \sim 1/2$
- $\Delta m_{31}^2 \sim 2.5 \cdot 10^{-3} \, \mathrm{eV}^2$ and $\theta_{23} \sim \pi/4$
- $\theta_{13} \lesssim 0.15$

This implies a lower bound on the mass of the heaviest neutrino

$$\sqrt{2.5 \cdot 10^{-3} \, \text{eV}^2} \sim 0.05 \, \text{eV}$$

but we currently do not know which neutrino is the heaviest.

Quarks

$$U_{CKM} = \begin{pmatrix} 1 & 0.2 & 0.005 \\ 0.2 & 1 & 0.04 \\ 0.005 & 0.04 & 1 \end{pmatrix}$$

Neutrinos

$$U_{\nu} = \begin{pmatrix} 0.8 & 0.5 & ? \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

Why are neutrino mixings so large?

Mass hierarchy in the SM

What makes neutrinos so much lighter?

Neutrinos in the Standard Model (SM) are strictly massless, *ie.* there is no way to write a mass term for neutrinos with only SM fields which is gauge invariant and renormalizable.

Neutrinos are massive in reality – thus neutrino mass requires physics beyond the standard model.

Neutrino oscillations

The mass eigenstates are related to flavor eigenstates by U_{ν} , thus a neutrino which is produced as flavor eigenstate is a superposition of mass eigenstates. These mass eigenstates propagate with different velocity and a phase difference is generated. This phase difference gives rise to a finite transition probability

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{ij} U_{\alpha j} U_{\beta j}^* U_{\alpha i}^* U_{\beta i} e^{-i\frac{\Delta m_{ij}^2 L}{2E}} \sim \sin^2 2\theta \sin^2 \frac{\Delta m_{ij}^2 L}{4E}$$

Neutrino oscillation is a quantum mechanical interference phenomenon and therefore it is uniquely sensitive to extremely tiny effects.

Neutrino oscillations – CP viol.

Like in the quark sector mixing can cause CP violation

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$$

The size of this effect is proportional to

$$J_{CP} = \frac{1}{8}\cos\theta_{13}\sin 2\theta_{13}\sin 2\theta_{23}\sin 2\theta_{12}\sin \delta$$

The experimentally most suitable transition to study CP violation is $\nu_e \leftrightarrow \nu_\mu$, which is only available in beam experiments.

Neutrino oscillation – matter

The charged current interaction of ν_e with the electrons creates a potential for ν_e

$$A = \pm 2\sqrt{2}G_F \cdot E \cdot n_e$$

where + is for ν and - for $\bar{\nu}$.

This potential gives rise to an additional phase for ν_e and thus changes the oscillation probability. This has two consequences

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$$

even if $\delta = 0$, since the potential distinguishes neutrinos from anti-neutrinos.

Neutrino oscillation – matter

The second consequence of the matter potential is that there can be a resonant conversion – the MSW effect. The condition for the resonance is

$$\Delta m^2 \simeq A$$

Obviously the occurrence of this resonance depends on the signs of both sides in this equation. Thus oscillation becomes sensitive to the mass ordering

	u	$ar{ u}$
$\Delta m^2 > 0$	MSW	-
$\Delta m^2 < 0$	_	MSW

$$P(
u_{\mu}
ightarrow
u_{e})$$

Two-neutrino limit – $\Delta m_{21}^{2}=0$

$$\approx \sin^2 2\theta_{13} \qquad \sin^2 \theta_{23} \qquad \frac{\sin^2((\hat{A}-1)\Delta)}{(\hat{A}-1)^2}$$

with
$$\hat{A} = \frac{2\sqrt{2}G_F n_e E}{\Delta m_{31}^2}$$
 and $\Delta = \frac{\Delta m_{31}^2 L}{4E}$

$$P(\nu_{\mu} \rightarrow \nu_{e})$$

Three flavors $-\Delta m_{21}^{2} \neq 0$

$$\approx \sin^2 2\theta_{13}$$

$$\sin^2 \theta_{23}$$

$$\frac{\sin^2((\hat{A}-1)\Delta)}{(\hat{A}-1)^2}$$

$$\pm \alpha \sin 2\theta_{13} \sin \delta \sin 2\theta_{12} \sin 2\theta_{23}$$

$$\frac{\sin(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$-\alpha \sin 2\theta_{13} \quad \cos \delta \sin 2\theta_{12} \sin 2\theta_{23}$$

$$\frac{\cos(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$\alpha^2$$

$$\cos^2\theta_{23}\sin^22\theta_{12}$$

$$\frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

with
$$\hat{A} = \frac{2\sqrt{2}G_F n_e E}{\Delta m_{31}^2}$$
 and $\Delta = \frac{\Delta m_{31}^2 L}{4E}$

$$P(\nu_{\mu} \rightarrow \nu_{e})$$

Small quantities $-\alpha := \Delta m_{21}^2/\Delta m_{31}^2$ and $\sin 2\theta_{13}$

$$\approx \sin^2 2\theta_{13}$$

$$\sin^2 \theta_{23}$$

$$\frac{\sin^2((\hat{A}-1)\Delta)}{(\hat{A}-1)^2}$$

$$\pm \alpha \sin 2\theta_{13} \sin \delta \sin 2\theta_{12} \sin 2\theta_{23}$$

$$\frac{\sin(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$\alpha \sin 2\theta_{13} \cos \delta \sin 2\theta_{12} \sin 2\theta_{23}$$

$$\frac{\cos(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$\cos^2\theta_{23}\sin^22\theta_{12}$$

$$\frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

with
$$\hat{A} = \frac{2\sqrt{2}G_F n_e E}{\Delta m_{31}^2}$$
 and $\Delta = \frac{\Delta m_{31}^2 L}{4E}$

• intrinsic ambiguity for fixed α

- intrinsic ambiguity for fixed α
- Disappearance determines only $|\Delta m_{31}^2| \Rightarrow$

$$\mathcal{T}_s := \Delta m_{31}^2 \to -\Delta m_{31}^2$$

- intrinsic ambiguity for fixed α
- Disappearance determines only $|\Delta m_{31}^2| \Rightarrow$ $\mathcal{T}_s := \Delta m_{31}^2 \to -\Delta m_{31}^2$
- Disappearance determines only $\sin^2 2\theta_{23} \Rightarrow$ $\mathcal{T}_t := \theta_{23} \to \pi/2 - \theta_{23}$

- intrinsic ambiguity for fixed α
- Disappearance determines only $|\Delta m_{31}^2| \Rightarrow$ $\mathcal{T}_s := \Delta m_{31}^2 \to -\Delta m_{31}^2$
- Disappearance determines only $\sin^2 2\theta_{23} \Rightarrow$ $\mathcal{T}_t := \theta_{23} \to \pi/2 - \theta_{23}$
- Both transformations $\mathcal{T}_{st} := \mathcal{T}_s \oplus \mathcal{T}_t$

CP fraction

- reduces 2D plot to 3 points
- allows unbiased comparison
- allows risk assessment
- CPF = 1, worst case guaranteed sensitivity
- CPF =0, best case

T2KK

- 4 MW protons from Tokai (JAERI)
- decay pipe fixed (same as for T2K)
- 2(!) water Cherenkov (WC) detectors with $m_{\rm fiducial} = 270 \, {\rm kt}$
- 2 baselines $L_1=295\,\mathrm{km}$ and $L_2=1050\,\mathrm{km}$
- same off-axis angle of 2°
- 4 years ν and 4 years $\bar{\nu}$
- performance as in T2K
- π^0 rejection as in T2K
- M. Ishitsuka *et al.*, PRD **72** 033003 (2005). K. Hagiwara *et al.*, PLB **637** 266 (2006).
- T. Kajita et al., hep-ph/0609286.

T2KK

- second baseline crucial for mass hierarchy
- also helps CPV at large θ_{13}

T2KK

- detectors errors for mass hierarchy important
- for CPV one needs to reduce the $\nu/\bar{\nu}$ errors

Upgrades of $NO\nu A$

- 1.13 MW from Main Injector at Fermilab (corresponding to 10^{10} pot in 1.7×10^7 s at 120 GeV)
- decay pipe fixed (same as for MINOS and $NO\nu A$)
- 100 kt liquid Argon time projection chamber (LArTPC)
- 3 years ν and 3 years $\bar{\nu}$ of 25 kt (TASD) NO ν A at Ash River
- plus 3 years ν and 3 years $\bar{\nu}$ of both

Liquid Argon

Any upgrade of $NO\nu A$ needs a detector that

- delivers high statistics
- has very low NC backgrounds
- works on surface (or close to it)

Liquid Argon

- 80% efficiency
- 0 NC background
- 5% energy resolution for QE events
- 20% energy resolution for non-QE events

B. Fleming, private communication

Where to put NOVA*

Is that location robust?

- optimal location in most cases in Canada
- uncertainty of Δm^2_{31} not a major problem
- not knowing δ is

Within the US, Ash River is as good as it gets! We call that setup, *i.e.* a LArTPC with $100 \, \mathrm{kt}$ at Ash River, $NO \nu A^*$

On vs off-axis

WBB

aka 'the BNL proposal' – originally proposed to be hosted by BNL, using 28 GeV protons from the AGS.

- 1 (ν) or 2 ($\bar{\nu}$) MW at 28 GeV
- 300 kt Water Cherenkov detector
- baseline of 1300 km, on-axis
- 5 years ν and 5 years $\bar{\nu}$
- performance based on full detector MC
 C. Yanagisawa
- improved π^0 rejection

WBB

- V. Barger, M. Dierckxsens, M. Diwan, PH, C. Lewis, D. Marfatia,
- B. Viren, Phys.Rev.D74:073004,2006.

Proton energies

- WC data only available for 28 GeV protons
- all other lines use a 100 kt LArTPC
- comparison at 28 GeV yields a 4:1 mass ratio of water to Argon

Exposure

Everyone has different assumptions about

- seconds in a year
- number of years
- detector size
- beam power (or pot)

Therefore we introduce the concept of exposure

detector mass [Mt] \times target power [MW] \times running time [10⁷ s].

Clearly, the event rate is directly proportional to the exposure.

Setups

Setup		$t_{ u}$ [yr]	$t_{ar{ u}}$ [yr]	P_{Target} [MW]	$L [\mathrm{km}]$	Detector technology	$m_{ m Det}$ [kt]	\mathcal{L}
NOνA*		3	3	$1.13~(u/ar{ u})$	810	Liquid Argon TPC	100	1.15
■WBB – 1	$120_{ m S}$	5	5	$1\ (\nu)\ + 2(\bar{\nu})$	1290	Liquid Argon TPC	100	2.55
T2KK		4	4	$4~(u/ar{ u})$	295+1050	Water Cherenkov	270+270	17.28
β -beam		4	4	n/a	730	Water Cherenkov	500	n/a
NuFact		4	4	$4~(u/ar{ u})$	3000+7500	Magn. iron calor.	50+50	n/a

- 5% systematics for all setups
- Attention: from here on, also the WBB has a 100 kt LArTPC!

Comparison

At nominal exposure

- WBB -120_S best performance
- T2KK close for CPV

- T2KK needs by far the largest exposure
- NO ν A* does well for θ_{13} and CPV if the exposure is large enough > 2Mt MW $10^7 \mathrm{s}$ to resolve the $\mathrm{sgn}\Delta m$ degeneracy
- WBB-120_S performs best for any given exposure

Event rates

at $1 \text{Mt MW } 10^7 \text{s for } \sin^2 2\theta_{13} = 0.04$

- T2KK suffers from low statistics in the far detector
- NOvA* has a healthy event rate, but the baseline is too short

Robustness

- Exposure from 2 to 0.5 times nominal value
- Systematics from 2% to 10%
- Δm_{31}^2 from $2.0 3.0 \times 10^{-3} \,\mathrm{eV}^2$

At large θ_{13} any of the three setups can have the same performance as a NuFact or β -beam.

These large values would be certainly discovered by Double Chooz, Daya Bay, T2K and $NO\nu A!$

⇒ decision on next generation facility should wait at least for the first reactor data

Summary

- for $\sin^2 2\theta_{13} > 0.01$ no need for a neutrino factory or β -beam
- Exposure is the key factor money and physics
- Detector technology plays a big role
- Off vs On-axis decision requires careful analysis
- $NO\nu A^*$ can be a competitive experiment
- Short distances (< 500 km) are disfavored
- Every strategy requires MW beams, 0.1 Mt detectors, 10 years of running

500,000,000 \$\$

Conclusion

For Fermilab this boils down to

- re-use the NuMI beamline and go via NOvA to a large liquid Argon TPC
- build a new beamline towards DUSEL (Homestake) and use a modular water Cherenkov detector

Both options would benefit from more protons.